- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Baltzegar, Jacob (1)
-
Brotherton, Zachary_W (1)
-
Imbrogno, Jennifer (1)
-
Kambayashi, Naoya (1)
-
Kataoka, Yuki (1)
-
Keever, Jared_M (1)
-
Lynd, Nathaniel_A (1)
-
Pedretti, Benjamin_J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Block polyethers comprised of poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEG or PEO) segments form the basis of ABA‐type PEO‐b‐PPO‐b‐PEO poloxamer materials. The inverse architecture with an internal hydrophilic PEO segment flanked by hydrophobic blocks can be difficult to prepare with control of architecture by use of traditional anionic polymerization. These oxyanionic polymerizations are plagued by chain‐transfer‐to‐monomer side reactions that occur with substituted epoxides such as propylene oxide (PO). Herein, we report a new method for the preparation of block polymers through a controlled polymerization involving a N‐Al Lewis adduct catalyst and an aluminum alkoxide macroinitiator. The Lewis pair catalyst was able to chain‐extend commercial PEO macroinitiators to prepare di‐, tri‐, and pentablock polyethers with low dispersity and reasonable monomer tolerance. Chain extension was confirmed using size exclusion chromatography and diffusion ordered nuclear magnetic resonance spectroscopy. The resulting block polymers were additionally analyzed with small‐angle X‐ray scattering to correlate the morphology to molecular architecture.more » « less
An official website of the United States government
